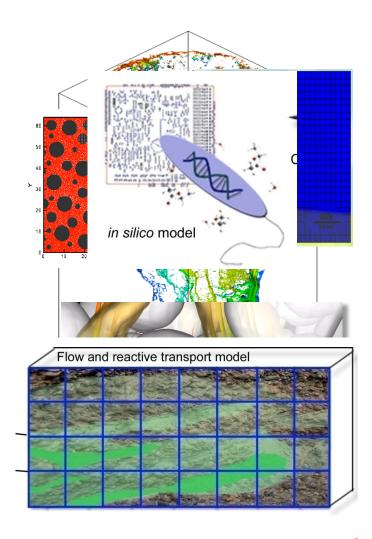


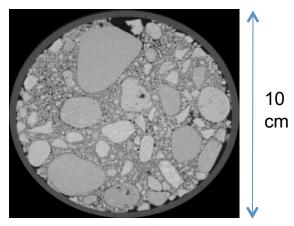
Present and Future Computing Requirements

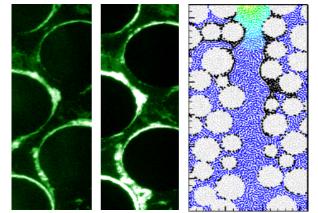
Case Study: Subsurface Flow and Reactive Transport


Tim Scheibe

Pacific Northwest National Laboratory tim.scheibe@pnnl.gov

Project Description

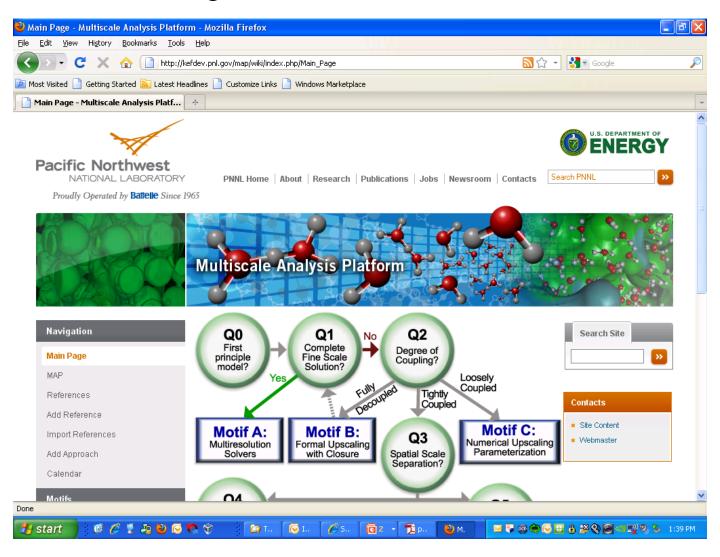

- Multiple projects (all funded by BER / CESD / SBR):
 - SciDAC Groundwater Science Application and SAPs (ended) – Hybrid multiscale simulation of subsurface reactive transport
 - PNNL Subsurface Scientific Focus Area – Impact of microenvironments and transition zones
 - University-led project (ending) Coupling genome-scale microbial metabolism and subsurface reactive transport models (linked to Rifle Integrated Field Challenge project)



Our present focus is...

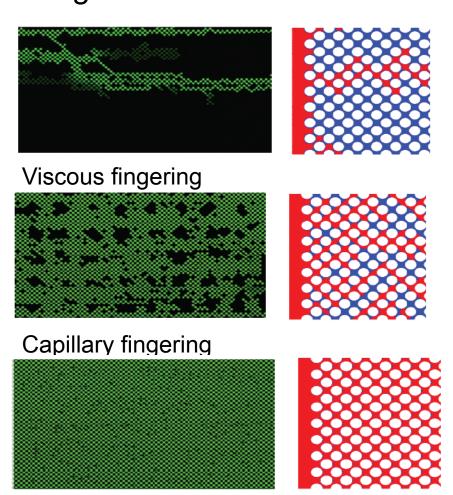
- More physics/chemistry/biology, less empiricism
 - Pore-scale and other highresolution flow/transport modeling
 - Mechanistic biological models
- Addressing the "tyranny of scales"
 - Hybrid multiscale simulation to link pore- and continuum-scale models

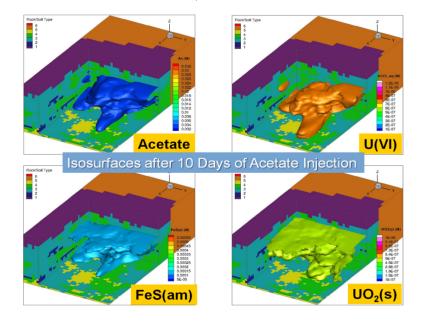
Data courtesy of John Zachara, PNNL



Tartakovsky et al., J. Porous Media, 2009 (Micromodel image: Carolyn Pearce, PNNL)

By 2017 we expect to...


Develop fully coupled pore- and continuum-scale hybrid simulator – Next generation of subsurface simulation tools?



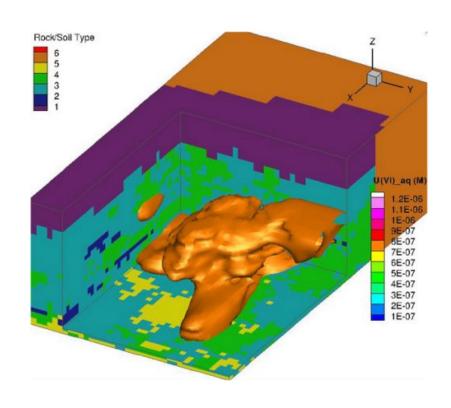
By 2017 we expect to...

Simulate multiphase flow, solute and energy transport, geochemical reactions, geomechanical effects, and multi-

organism microbial communities

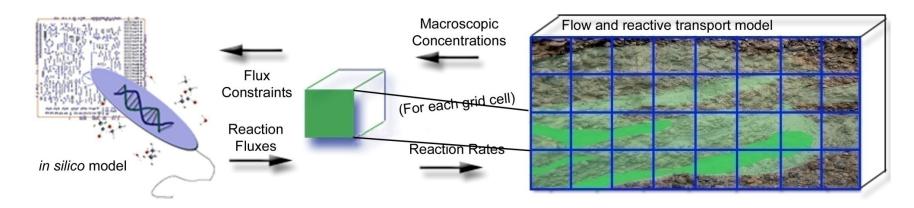
By 2017 we expect to...

Link subsurface models to larger-scale earth system simulations (e.g., community land model)



Codes we use are...

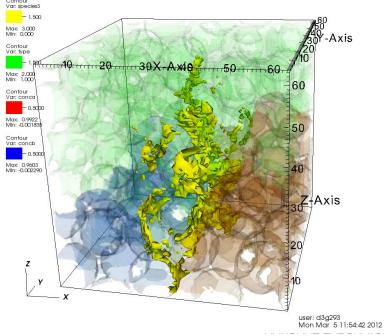
- eSTOMP: Continuum-scale porous media flow and reactive transport
 - Algorithms:
 - Finite difference spatial discretization
 - Newton non-linear outer loop
 - Linear inner solve
 - Operator split (reactions / transport / flow)
 - Built on Global Arrays (GA)Toolkit and PETSc
 - Parallel scaling limited by
 - Scales well to over 130,000 processors
 - Weak scaling limited by global linear system solve
 - Load balancing for reactions


Benchmark Problem: uranium bioremediation

18m x 20m x 6.3m, 2.2M grid cells 300 time steps, 1 simulated day, checkpoint each 6 sim hours 5 lithofacies, 102 biogeochemical species, 7 mineral reaction network

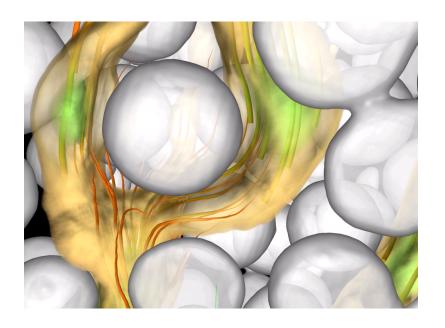
Codes we use are...

- eSTOMP: Continuum-scale porous media flow and reactive transport
 - Computational Challenges
 - Integrating mechanistic models of microbially-mediated reactions with complex communities of organisms
 - Small (N=500) LP solution at each iteration of each time step at each grid cell
 - Convergence issues
 - ◆ E.g., fully coupled well model in eSTOMP-CO2

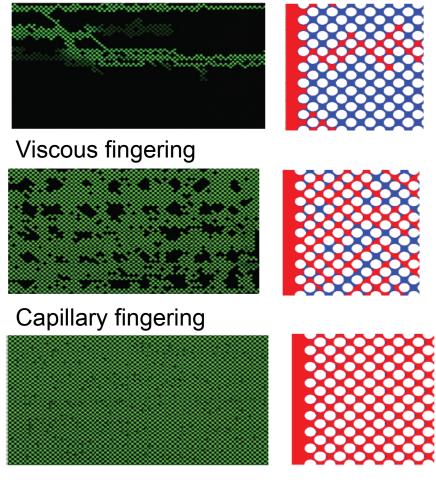

Codes we use are...

- SPH: Pore-scale porous media flow and reactive transport
 - Algorithms:
 - Smoothed Particle
 Hydrodynamics lagrangian
 mesh-free particle method
 - No global linear matrix solve
 - Local force calculation requires tree search for neighbors
 - Reactions system of ODEs
 - Built on Global Arrays (GA) Toolkit
 - Parallel scaling limited by
 - Had been I/O limited but this has been addressed through use of H5PART

Example Problem: mixingcontrolled precipitation reaction


1 mm³, 7 M computational particles About 100 mineral grains Two dissolved species react to form a precipitated mineral species

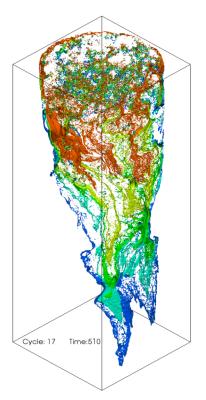
Codes we use are...

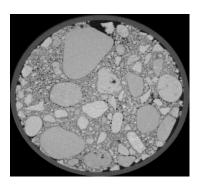

- SPH: Pore-scale porous media flow and reactive transport
 - Computational Challenges
 - Boundary conditions:
 - Periodic conditions usually used; how to deal with solute concentrations?
 - Flux-based boundary conditions had been difficult to implement
 - Time steps required for stability are typically very small
 - Strictly is for compressible flows – use for nearly incompressible fluids leads to challenges
 - Slow compared to gridbased methods for singlephase flow

Codes we use are...

- SPH for multiphase flow
 - Can simulate surface tension and contact angle by varying particle-particle attractive forces
 - Application to new BER directions in carbon cycling within terrestrial ecosystems.
 - Currently testing 3D airwater simulations with microbial reactions for cellulose degradation

Stable displacement

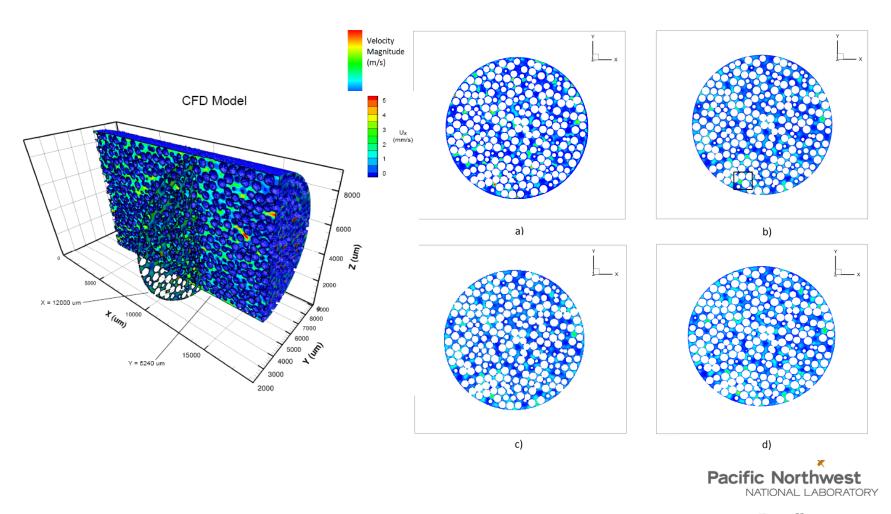



Codes we use are...

- TETHYS: Pore-scale porous media flow and transport
 - Algorithms:
 - Finite volume unstructured spatial discretization
 - Built on Global Arrays (GA) Toolkit and PETSc
 - Parallel scaling limited by
 - I/O, code structure
 - Computational challenges
 - Runs as unsteady problem to steady state – wait times in queue is limiting
 - Mesh-based approach limits application to problems with moving interfaces (e.g., multiphase flow, precipitation/ dissolution reactions, biofilms)

Example Problem: Navier-Stokes flow and tracer transport in a laboratory column

20 cm length, 10 cm diameter, 40 M computational nodes 50 micron spatial resolution derived from X-ray microtomography 4000 cores on Hopper



Codes we use are...

- ► TETHYS: Pore-scale porous media flow and transport
 - Validation study with MRI

3. Current HPC Usage

Current HPC Usage

- Machines currently used:
 - NERSC (2.5 M hours in 2012)
 - Chinook (EMSL) and Olympus (PNNL Institutional Computing) (< 1M hours in 2012)
- Concurrency, run time, # runs/year:
 - **eSTOMP:** typ. 100-1000 cores per run, O(1 day), many runs can be performed simultaneously for UQ, hundreds to thousands run/yr
 - **SPH**: typ. 1000-2000 cores per run, O(1 day), hundreds runs/yr
 - **Hybrid SPH/STOMP:** <100 cores per SPH, minutes turnaround, total allocation 1000 cores, 6 hours, < 100 runs/yr
 - **TETHYS:** 4000 cores per run, several days clock time, < 10 runs / yr

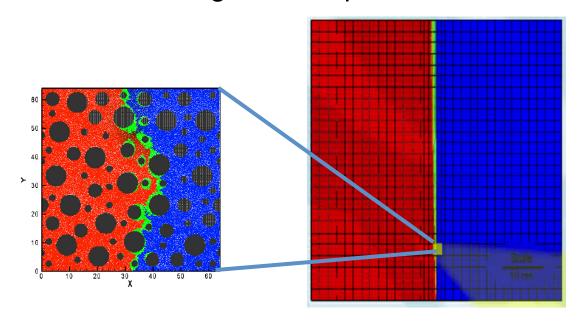
3. Current HPC Usage

Current HPC Usage

- Data / memory requirements:
 - Data I/O and storage generally small
 - Memory requirements not limiting (or can be addressed with code efficiency)
- Necessary software, services or infrastructure
 - Workflow management tools for hybrid simulation (SWIFT)
 - Visualization (VISIT)
 - GA and PETSc

Memory

- per core memory demand limited the number of computational cores per node to 4
 - 52,800 process job had to allocate, but not use, an additional 105,600 processor cores
- software was modified to use only distributed arrays for the chemical species eliminated the temporary allocation of 102 field arrays in local memory
 - modification resulted in 1.72 GB less memory usage per core
- improved the on chip-processor utilization by a factor of three; permitted the problem to be solved with smaller processor counts.



4. Future HPC Usage

Future HPC Usage

- At-scale codes are currently near maximum reasonable usage needs
 - Pore-scale simulation domain volumes are approaching "Darcy" scale from which macroscopic processes/parameters can be defined
 - Trying to simulate application-relevant domains with full porescale resolution is not a reasonable target in the foreseeable future
 - Many orders of magnitude (~10¹⁵) scale gap (cm to km)
 - Couldn't meaningfully characterize at this scale anyway
 - x32 might be utilized through
 - More UQ
 - More complex microbial modeling (communities with many functional groups)
 - ◆ eSTOMP factor of 10 increase for a single in-silico species model
 - More coupling, complex processes
 - Multiphase flow, geomechanical processes
 - ◆ Larger domains (CO2 vs. contaminant plumes) Proudly Operated by Battelle Since 1965

- A more interesting and potentially transformative approach is a new paradigm for subsurface modeling – directly coupling pore- and continuum-scale codes in a single simulation domain
 - Spans scale gap between fundamental process representations and applications
 - Maintains reasonable efficiency
 - Takes advantage of multiple levels of concurrency

Micromodel Experiments

Mixing-controlled calcium carbonate precipitation (Zhang et al., ES&T 44(20), 2010).

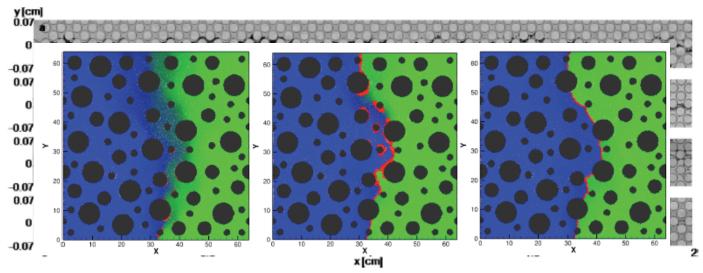
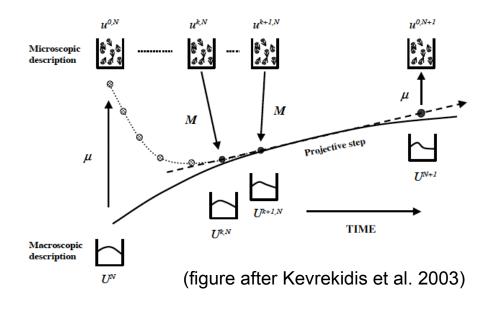
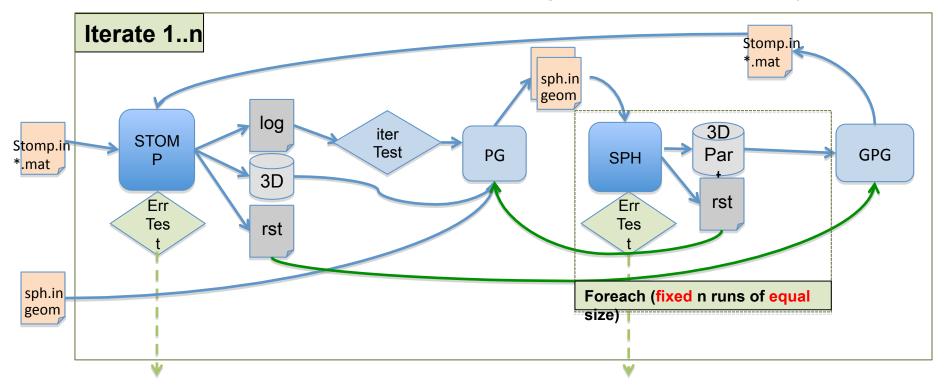



FIGURE 2. Images of center of micromodels with CaCO₃ precipitates formed along the mixing zone at different saturation states (a) $\Omega_c/\Omega_V = 3.4/2.8$, (b) $\Omega_c/\Omega_V = 3.8/3.1$, (c) $\Omega_c/\Omega_V = 4.6/3.9$, and (d) $\Omega_c/\Omega_V = 5.2/4.5$.

- Multiscale dimension reduction approach
 - Reduce degrees of freedom (number of time steps) solved in microscale simulation by iterating between microscale and macroscale
 - Perform numerical closure on microscale with short bursts of porescale simulation where insufficient general closure exists


Tartakovsky and Scheibe, *Advances in Water Resources*, 2011

Multiscale dimension reduction approach

Current work: Put into the context of many possible porescale subdomains in a focused region with adaptivity

Uses SALSSA workflow environment and SWIFT job management tools

Pacific Northwest

Future HPC Usage – Multiscale Hybrid

- Compute hours needed
 - Could effectively use x32 to make significant advances
- Changes to parallel concurrency, run time, number of runs per year
 - Multiple levels of concurrency
 - Run times and number of runs comparable, but each run would involve many "sub-runs"
- Changes to data read/written
 - I/O during simulation larger but long-term storage still small
- Changes to memory needed
 - Not significantly different
- Changes to software/services/infrastructure required
 - Workflow management tools critical
 - Visualization during simulation

Strategies for New Architectures

- Our strategy for running on new many-core architectures (GPUs or MIC) is ...
 - Poorly defined but under development
 - SPH may become more attractive under new architectures
- To date we have prepared for many core by ...
 - Collaborating with computational scientists under PNNL eXtreme-Scale Computing Initative to perform testbed studies
- We are already planning to do ...
- To be successful on many-core systems we will need help with
 - Updated programming models on which we heavily rely
 - E.g., will Global Arrays work well on new architectures, or be revised to do so?

Summary

- What new science results might be afforded by improvements in NERSC computing hardware, software and services?
 - New approach to multiscale simulation of subsurface processes
 - Move from parameterized phenomenological models to mechanistic process-based predictive models
- What "expanded HPC resources" are important for your project?
 - Programming models for new architectures
 - Workflow management and visualization tools

Questions?

